
Operating Systems
Instructor : Asaad Al Hijaj

Chapter 4: Threads

Overview

Multithreading Models

Threading Issues

Pthreads

Windows XP Threads

4.2 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Single and Multithreaded Processes

4.3 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Benefits
 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

User Threads
 Thread management done by

 user-level threads library

 Three primary thread libraries:

 POSIX Pthreads

 Win32 threads

 Java threads

Kernel Threads
 Supported by the Kernel

 Examples

 Windows XP/2000

 Solaris

 Linux

 Tru64 UNIX

 Mac OS X

4.4 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Multithreading Models

 Many-to-One

 Many user-level threads mapped to

single kernel thread

 One-to-One

 Each user-level thread maps

to kernel thread

4.5 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Multithreading Models

Two-level Model

 Similar to M:M, except that it allows a

user thread to be bound to kernel

thread

 Many-to-Many

• Allows many user level threads

to be mapped to many kernel

threads

• Allows the operating system to

create a sufficient number of

kernel threads

4.6 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Threading Issues

 Thread Cancellation

 Signal Handling

 Thread specific data

 Thread Pools

 Scheduler Activations

4.7 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Thread Cancellation

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates

the target thread immediately

 Deferred cancellation allows the target

thread to periodically check if it should be

cancelled

4.8 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Signal Handling

 Signals are used in UNIX systems to notify a process that a

particular event has occurred

 A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled

 Options:

 Deliver the signal to the thread to which the signal applies

 Deliver the signal to every thread in the process

 Deliver the signal to certain threads in the process

 Assign a specific threa to receive all signals for the process

4.9 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Thread Specific Data

Allows each thread to have its

own copy of data

Useful when you do not have

control over the thread creation

process (i.e., when using a

thread pool)

4.10 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Thread Pools
 Create a number of threads in a pool where they await work

 Advantages:

 Usually slightly faster to service a request with an existing thread

than create a new thread

 Allows the number of threads in the application(s) to be bound to

the size of the pool

Scheduler Activations

 Both M:M and Two-level models require communication to

maintain the appropriate number of kernel threads allocated to

the application

 Scheduler activations provide upcalls - a communication

mechanism from the kernel to the thread library

 This communication allows an application to maintain the

correct number kernel threads

4.11 Operating System Concepts – 7th edition Instructor :Asaad Alhijaj

Windows XP Threads

 Implements the one-to-one mapping

 Each thread contains

 A thread id

 Register set

 Separate user and kernel stacks

 Private data storage area

 The register set, stacks, and private storage area are known

as the context of the threads

 The primary data structures of a thread include:

 ETHREAD (executive thread block)

 KTHREAD (kernel thread block)

 TEB (thread environment block)

